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Jealousy Graphs: Structure and Complexity of
Decentralized Stable Matching

Moshe Hoffman, Daniel Moeller, and Ramamohan Paturi
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Abstract. The stable matching problem has many applications to real
world markets and efficient centralized algorithms are known. However,
little is known about the decentralized case. Several natural randomized
algorithmic models for this setting have been proposed but they have
worst case exponential time in expectation. We present a novel structure
associated with a stable matching on a matching market. Using this
structure, we are able to provide a finer analysis of the complexity of a
subclass of decentralized matching markets.

Keywords: decentralized stable matching, market algorithms

1 Introduction

The stable matching problem and its variants have been widely studied due to
real world market applications, such as assigning residents to hospitals, women
to sororities, and students to public schools [1–3]. In a seminal paper, Gale and
Shapley first proposed an algorithm to find a stable matching in the basic two-
sided (bipartite) version [4]. Others have subsequently investigated the structure
of the set of stable matchings [1]. However, most prior work involves centralized
algorithms to find stable matchings where the entire set of preferences is known
to some central authority. In some cases the algorithms are not totally central-
ized, but the participants are subject to strict protocols where only one side
of the market can make proposals. Nevertheless, many applications of stable
matchings have no central authority or enforcement of protocols, such as college
admissions and the computer scientist job market. Therefore we investigate this
problem in a decentralized setting, where members of both sides of the market
can make proposals.

One major open question in decentralized stable matching concerns whether
natural and efficient algorithms exist. To this end, Yariv argues that natural
processes will find a stable matching and provides experimental support [5].
Roth and Vande Vate propose a class of randomized algorithms to model the
decentralized setting and show that algorithms in this class converge to a stable
matching with probability one [6]. At each step these algorithms match two
participants who form a blocking pair (who prefer to be matched with each other
over its partner) of the current matching. However, they present no expected time
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complexity. Ackerman et al. investigate one particular algorithm in this class,
the better response algorithm (or random better response dynamics). In each
step of this algorithm, one blocking pair is chosen uniformly at random. For this
algorithm, they show worst case instances that take exponential time to reach a
stable matching in expectation [7].

Since the better response algorithm is natural but takes exponential time in
the worst case, can we find a natural subclass of matching markets which do
not require exponential time? Ackermann et al. show that the better response
algorithm only requires polynomial time for one class of problem instances, those
with correlated preferences [7]. However, correlated preferences require that a
participant obtains the same benefit from a partnership as its partner. This
significantly limits the preference structures allowed in the matching market.
Therefore, we investigate other structural properties of stable matching markets
which facilitate faster convergence.

In this paper we make progress toward answering the previous question by
expanding the subclass of markets with polynomial time convergence guaran-
tees. For this purpose we associate a directed graph, called the jealousy graph,
with each stable matching. It turns out that this structure is a key factor in de-
termining the convergence time of the better response algorithm. The jealousy
graph is a directed graph where a vertex v corresponds to a pair in the stable
matching and an edge (u, v) is present if one member of the pair v prefers a
member of the pair u to its partner in the stable matching. The strongly con-
nected component graph of this jealousy graph provides a decomposition for that
stable matching. Our intent is to formalize a notion of structure using jealousy
graphs and the corresponding decompositions. In particular, we find that the
strongly connected components of this graph give insight into the complexity of
that market. Gusfield and Irving provide a structural property of stable match-
ings which describes the set of stable matchings and the relation between them,
whereas our structures relate to individual stable matchings and the distributed
process by which these stable matchings are achieved [1].

With a decomposition, we associate a size and depth. Our main result, The-
orem 24, states that for a matching market of size n with a decomposition of size
c and depth d, the convergence time is O(cO(cd)nO(c+d)). Therefore, for constant
size and depth decompositions, we demonstrate that the better response algo-
rithm requires only polynomial time in expectation to converge for an expanded
class of matching markets. This indicates that the jealousy graph and decom-
position structures partially answer the convergence questions of the decentral-
ized stable matching problem. As an application of our work, we demonstrate
how Theorem 24 provides theoretical justification for the simulated results of
Boudreau [8]. We also conjecture that these structures will provide a means of
predicting which stable matchings are likely to be achieved when there are mul-
tiple stable matchings, a question that others in the literature have investigated
[9, 5, 10].

In the remainder of this section we formalize our model and present the
basic concepts. In section 2, we present some useful structural properties of



Jealousy Graphs 3

the jealousy graph and decomposition. In section 3, we have our convergence
result. Section 4 contains the application of our work to [8], and section 5 is our
conclusion.

1.1 Basic Stable Matching Concepts

We start with the basic definitions of matching markets and stable matchings.
Those familiar with the matching literature will notice that we restrict prefer-
ences to be complete and strict.

Definition 1 (S, P ) is a matching market if S = M
⋃
W for some disjoint sets

M,W , |M | = |W | and P = {�s}s∈S where, for s ∈ M , �s is a total order over
W , and for s ∈ W , �s is a total order over M .

We say a matching market has size n if |M | = |W | = n.

Definition 2 A matching on the set S is a function µ : S → S such that ∀s ∈ S,
µ(µ(s)) = s, s ∈ M ⇒ µ(s) ∈ W

⋃
{s} and s ∈ W ⇒ µ(s) ∈ M

⋃
{s}.

We say that a participant s ∈ S is unmatched by a matching µ if µ(s) = s.
We also assume that all participants prefer to be matched to anyone than to be
unmatched. Observe that µ can be thought of as a collection of pairs (m,w) if
we allow self loops (s, s) for unmatched participants.

Definition 3 A matching on the set S is a perfect matching if µ(s) 6= s for all
s ∈ S.

Given a matching, if there were a man and a woman who each preferred the
other to their partner, this causes the matching to be unstable. Therefore any
stable matching must have no such pairs. We call such a pair a blocking pair,
defined formally here:

Definition 4 Let (S, P ) be a matching market and µ be any matching on S.
A blocking pair for µ in (S, P ) is a pair (m,w) such that m ∈ M , w ∈ W ,
µ(m) 6= w, w �m µ(m), and m �w µ(w).

Definition 5 Let (S, P ) be a matching market. A matching µ on S is a stable
matching for (S, P ) if it has no blocking pairs in (S, P ).

The following three concepts will be useful since we will deal with subsets of
the matching market.

Definition 6 A balanced subset of a matching market (S, P ), S = M
⋃
W , is

a subset S′ ⊆ S such that |S′ ⋂M | = |S′ ⋂W |.

Definition 7 A matching µ is locally perfect on a balanced subset S′ ⊆ S if
µ(S′) ⊆ (S′) and µ �S′ is a perfect matching on S′.

Definition 8 Let µ be a stable matching on a matching market (S, P ). A match-
ing µ′ is µ-stable on a balanced subset S′ ⊆ S if µ′ �S′= µ �S′ .
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1.2 Better Response Algorithm

The class of algorithms introduced by Roth and Vande Vate [6] involve randomly
choosing a blocking pair of the current matching and creating a new matching
by matching the participants in the blocking pair with each other. This resolves
the chosen blocking pair.

Definition 9 A blocking pair (x, y) in a matching µ is resolved by forming a
new matching µ′ where µ′(x) = y, µ′(µ(x)) = µ(x) if µ(x) 6= x, µ′(µ(y)) = µ(y)
if µ(y) 6= y, and µ′(s) = µ(s) for s /∈ {x, y, µ(x), µ(y)}.

This process is repeated until a stable matching is reached. The better re-
sponse algorithm defined in [7], is the algorithm in this class where the blocking
pair is chosen uniformly at random from all blocking pairs of the current match-
ing. Note that this algorithm results in a sequence of matchings. A valid sequence
of matchings is any sequence where each matching is formed by resolving one
blocking pair in the previous matching.

We focus on the better response algorithm since the uniform distribution
on blocking pairs facilitates our analysis and we believe it provides insight into
the more general class of algorithms. This algorithm also serves as a model of a
distributed stable matching market.

1.3 Jealousy Graph and Related Definitions

In order to analyze matching markets, we represent the preference structure as
a directed graph. While we lose some of the preference information, we retain
critical relationships relative to the stable partners. In section 3 we will provide
bounds on convergence based on this simpler structure.

Definition 10 The jealousy graph of a stable matching µ on a matching market
(S, P ) is defined as the graph Jµ = (V,E) where, for each pair {x, µ(x)}, x ∈
S, there is a vertex v{x,µ(x)} ∈ V and E = {(u{x,y}, v{x′,y′})|u{x,y}, v{x′,y′} ∈
V, and either x �y′ x′ or y �x′ y′}.

The jealousy graph can provide insight into the complexity of stabilization. For
example, suppose the jealousy graph for a stable matching µ is one large clique.
Even when all but one pair of the participants are matched with their partner in
µ, there are still many blocking pairs. Therefore, the better response algorithm
would be unlikely to choose the blocking pair that would result in a stable
matching. This greatly hinders convergence to the stable matching.

On the other hand, suppose the jealousy graph for µ is a DAG. Then there
is at least one vertex with no incoming edges. This means each partner in the
corresponding pair is the other’s first preference. Consequently, this will remain
a blocking pair until it is resolved, so we would expect such a pair to be resolved
in O(n2) time under the better response dynamics. Moreover, once resolved, the
match will remain unbroken since neither partner will ever be involved in any
blocking pairs. Ignoring this pair will result in at least one other source vertex
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of the graph. Inductively, these pairs will be resolved in O(n2) expected time.
This results in an expected convergence time of O(n3) for the matching market.
It should be noted that the class of correlated markets, for which Ackermann et
al. prove the better response algorithm requires only polynomial time, falls into
this special case.

When it is a DAG, the jealousy graph provides an order in which the pairs
will likely be resolved to reach µ, namely, a topological sorted order. However, a
matching market might not fall into this extreme case as there could be cycles
in the jealousy graph. Therefore, we define a decomposition which is a DAG
obtained from the jealousy graph.

Definition 11 Let Jµ be the jealousy graph of a stable matching µ for a match-
ing market (S, P ). A µ-decomposition, ρµ is a graph of components of Jµ such
that if u, v are in the same strongly connected component of Jµ then they are in
the same component in ρµ and if edge (A,B) is in ρµ then there is a path from
a vertex in A to a vertex in B in Jµ.

We call the strongly connected components of Jµ stable components. Observe
that ρµ is a directed acyclic graph. Therefore it induces a partial order on the
stable components. Sometimes it will be simpler to refer to the decomposition
as ρµ = (Π,�) where Π is a partition of S into sets corresponding to the stable
components of ρµ and � is the induced partial order on those components. As
a slight abuse of notation, we will use the term stable component to refer to
both the connected component in the decomposition and the set of participants
corresponding to this component.

In dealing with partial orders we will use the concept of a downset. A downset
of a partially ordered setΠ with partial order� is any set such that forA,B ∈ Π,
if A is in the set and B � A, then B is in the set. The downset of an element
A ∈ Π is Down(A) = {B|B � A}. When the elements of Π are sets themselves,
as in the case of decompositions, we will denote union of sets in Down(A) as
D(A) =

⋃
B∈Down(A) B.

For our complexity results we need the following two notions:

Definition 12 The depth of a stable component A of a µ-decomposition, ρµ, is
the length of the longest path in ρµ from any source vertex to vA. The depth of
ρµ is defined as maxA∈ρµ depth(A).

We will say that a stable component A is on level j if depth(A) = j. Minimal
stable components are on level 0. Intuitively, we would expect components on
lower levels to converge to the stable matching sooner than those on higher
levels.

Definition 13 The size of a µ-decomposition, ρµ, is defined as maxA∈ρµ size(A).

Intuitively, components with smaller sizes can have less internal thrashing so
they will converge to the stable matching more quickly than larger components.
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2 Structural Results

2.1 Any Digraph can be a Jealousy Graph

These structural notions would not be very enlightening if all matching markets
had the similar jealousy graphs and decompositions. However, the following re-
sult shows that any directed graph is the jealousy graph associated with a stable
matching for some matching market. The proof can be found in the Appendix.

Theorem 14 Given any directed graph G with n vertices, there is a set S =
{mi, wi|i = 1, 2, . . . , n} and preferences P = {�mi ,�wi |1 ≤ i ≤ n} such that
(S, P ) is a matching market with a stable matching µ where µ(mi) = wi and
Jµ = G.

2.2 Properties of Decompositions

In this section we prove several structural properties of the jealousy graphs and
decompositions essential to our main convergence result. The proofs are in the
Appendix. The first property says that if there is a path from one vertex to
another in the jealousy graph, then the first vertex must be in the downset of
any component containing the second vertex.

Lemma 15 Given a matching market (S, P ) with a stable matching µ, let Jµ
be the jealousy graph associated with µ. Let v{m,w} and v{m′,w′} be vertices in
Jµ. Suppose v{m′,w′} ∈ A for a stable component A of a µ-decomposition ρµ =
(Π,�). If there is a path from v{m,w} to v{m′,w′}, then m,w ∈ D(A).

Using this lemma, we prove that no member of a stable component can prefer
anyone outside of the downset of that component to his stable partner.

Lemma 16 Given a matching market (S, P ) with a stable matching µ, let ρµ =
(Π,�) be a µ-decomposition. For A ∈ Π, a ∈ A, s ∈ S −D(A), µ(a) �a s.

A further property is that if there are two stable matchings with distinct
decompositions, the intersection of the downsets of stable components must be
mapped to itself in both stable matchings.

Lemma 17 Given a matching market (S, P ) with stable matchings µ, µ′, let ρµ
and ρµ′ be respective decompositions. Let A be D(X) for some stable component
X of ρµ and B be DY for some stable component Y of ρµ′ . Then µ(A

⋂
B) =

µ′(A
⋂
B) = A

⋂
B.

Our final result shows that forming a stable matching on the downset of
a stable component cannot increase the size or depth of the decomposition of
another stable matching.

Lemma 18 Given a matching market (S, P ) with stable matchings µ, µ′, let ρµ
and ρµ′ be respective decompositions. Suppose the size of ρµ is c and the depth
is d. Let A be a stable component of ρµ′ . Then there is a stable matching µ′′

such that µ′′ �Dµ′ (A)= µ′ �Dµ′ (A) and µ′′ �S−Dµ′ (A)= µ �S−Dµ′ (A). There is also

a µ′′-decomposition on S −Dµ′(A) of size at most c and depth at most d.
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3 Convergence

In this section we prove our convergence result. The proof uses two main ideas.
First, in the following sequence of lemmas, we show that a stable component
will converge to a locally perfect matching in time that is only polynomially
dependent on the size of the entire market. Then the proof of Theorem 24 uses
this to bound the time it takes for all components of the decomposition to reach
a stable matching.

For this section we will assume (S, P ) is a matching market of size n, µ is a
stable matching on S, and (Π,�) be a µ-decomposition.

The following lemma says that if a matching is not locally perfect on a stable
component of a µ-decomposition, then there is a blocking pair which is in µ
between two members of that component.

Lemma 19 Let A ∈ Π and X = D(A) − A. Let µ′ be the current matching.
If µ′ has no matches between members of X and members of A and µ′ is not
locally perfect on A, then there is a blocking pair (x,y) for µ′ such that µ(x) = y.

Proof. Since µ′ is not a locally perfect matching on A there must be some x0 ∈ A
such that µ′(x0) = x0 or µ′(x0) ∈ S −X − A. Let y0 = µ(x0). Now since µ is a
stable matching, y0 �x0 µ′(x0). If x0 �y0 µ′(y0) then (x0, y0) is a blocking pair
of µ′ and µ(x0) = y0.

Otherwise µ′(y0) �y0 x0, so µ′(y0) ∈ D(A). In fact, µ′ ∈ A since µ′ has no
matches between members of A and X. Let x1 = µ′(y0) and y1 = µ(x1). Since
µ is a stable matching, y1 �x1 y0 or else (x1, y0) would form a blocking pair for
µ. Now if x1 �y1 µ′(y1), (x1, y1) is a blocking pair of µ′ and µ(x1) = y1 so we
have our result. Otherwise we repeat in the same manner to form a sequence of
pairs {(xi, yi)} such that xi, yi ∈ A, µ(xi) = yi, µ

′(yi) = xi+1, yi �xi µ
′(xi), and

xi+1 �yi xi for all i. But this cannot cycle since no participant is repeated. This
is because at each step we add a new pair xi, yi where µ(xi) = yi and either
µ′(x0) = x0 or µ′(x0) /∈ A, so x0 cannot be repeated. Furthermore, it cannot go
forever since A is finite. Therefore the sequence must terminate at some index k
and (xk, yk) is a blocking pair for µ′.

Next we place a lower bound on the probability that we make some progress
toward the µ-stable matching when a stable component of the decomposition is
not in a locally perfect matching.

Lemma 20 Let A ∈ Π be a stable component of size at most c and X = D(A)−
A. Let µ′ be any matching on S that is not a locally perfect matching on A. Then
starting from µ′, if no matches are formed between a member of A and a member
of X, the probability that the first blocking pair resolved between two members of
A is a pair in µ is at least 1

c2 .

Proof. Lemma 19 shows there will be one blocking pair which is in µ until the
matching becomes locally perfect on A. In order for the matching to become
locally perfect on A, a blocking pair must be resolved between two members of
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A. Therefore since there will be at most c2 blocking pairs involving two members
of A and at least one of them is in µ, there is a 1

c2 probability that the first
blocking pair resolved between members of A is in µ.

Using this lemma, we bound the probability that a component of the decom-
position will make some progress toward the µ-stable matching each time the
matching is not locally perfect on it.

Lemma 21 Let A ∈ Π be a stable component of size at most c and X = D(A)−
A. Let µ0 be any matching on S such that µ0 �A contains m of the pairs in µ
where 0 ≤ m < c. Let µ0, µ1, . . . , µt be any valid sequence of matchings under
the better response dynamics starting from µ0 such that

1. µt is locally perfect on A
2. µi is not locally perfect on A for some i, 0 ≤ i < t
3. µk does not have any matches between a member of A and a member of X

for some k, 0 ≤ k ≤ t

Then the probability that ∃j, 0 < j ≤ t, µj �A contains at least m+1 of the pairs
in µ is at least 1

c4 .

Proof. Assume µ0, µ1, . . . , µt is such a sequence, and i is the first index such that
µi is not locally perfect. Without loss of generality assume k = t is the first index
k > i such that µk is locally perfect on A. This assumption is valid because, if
there is at least a probability p of some event occurring in a subsequence, then
there is clearly at least a probability p of that event occurring in the entire
sequence.

There are two cases: either µ0 is locally perfect on A or not.
case i : Assume µ0 is not locally perfect, so i = 0. Then in order to reach

µt there must be at least one match formed between two members of A. Let
j > 0 be the first index in the sequence such that µj was formed by resolving a
blocking pair between two members of A. Since no one in A prefers anyone in
S−D(A) to his partner in µ, µj−1 �A has m pairs in µ. By lemma 20 there is at
least 1

c2 probability that the first blocking pair resolved between two members
of A is in µ. This will result in µj �A having m+ 1 pairs in µ.

case ii : If µ0 is locally perfect, so i > 0. There are two ways to transition
from µi−1 to µi. One is for a blocking pair of µi−1 between a member of A and
a member of S −X − A to be resolved. Since this cannot involve a member of
A who is with his partner in µ according to µ′, µi �A has m pairs that are in
µ. Therefore this case reduces to the first case where the initial matching is not
perfect.

The other way to transition from µi−1 to µi is for a blocking pair between
two members of A to be resolved, leaving two unmatched members of A, say x, y.
The blocking pair cannot involve two pairs of µ or else it would be a blocking
pair for µ. If it involves no pairs of µ then again this case reduces to the first
case.

In the last case, µi �A has m − 1 pairs that are in µ. We cannot reach µt

without resolving a blocking pair between two members of A. Let l > i be the
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first index after i in the sequence such that µl was formed by resolving a blocking
pair between two members of A. Then µl−1 �A must have m−1 pairs that are in
µ. By lemma 20 there is at least 1

c2 probability that µl �A has m pairs that are
in µ. If this occurs, the blocking pair resolved to transition to µl cannot involve
both x and y because they are not partners in µ. Thus, at least one of x or y is
still not matched to someone in A. Therefore, µl is not a locally perfect matching
on A. Then by the first case, we have at least 1

c2 probability that for some j,
l < j ≤ t, µj �A has m+ 1 pairs that are in µ. This gives us a total probability
of at least 1

c4 that µj �A has m+ 1 pairs that are in µ for some j, 0 < j ≤ t.

We now bound the expected number of times each stable component will
have to become not locally perfect before it becomes µ-stable.

Lemma 22 Let A ∈ Π be a stable component of size at most c and X = D(A)−
A. Let µ′ be any matching on S. Then starting from µ′, if no matches are formed
between a member of A and a member of X, the expected number of distinct
times the matching needs to transition from a locally perfect matching on A to
a matching that is not locally perfect on A before it reaches a µ-stable matching
on A is at most c4(c+1).

Proof. Consider a Markov chain with states {0, 1, . . . , c} where state i represents
a matching whose restriction to A has i pairs in µ. Let ti be the expected number
of times, starting from state i, that the matching transitions from a locally
perfect matching on A to a matching that is not locally perfect on A before it
reaches a µ-stable matching on A. Then tc = 0 since state c represents a µ-stable
matching. For all other states, by lemma 21, we have at least a 1

c4 probability
of reaching state i+ 1 from state i after one or fewer transitions from a locally
perfect matching on A to a matching that is not locally perfect on A. In the
worst case, we will move to state 0 after one such transition with the remaining

probability. This leads to the formula ti ≤ c4−1
c4 t0+

1
c4 ti+1+1 for i = 0, 1, . . . , n.

We need to upper bound t0 since 0 is the farthest state from c. Now t0 ≤
t1 + c4. Furthermore if t0 ≤ ti +

∑i
j=1 c

4j , then

t0 ≤ c4 − 1

c4
t0 +

1

c4
ti+1 + 1 +

i∑
j=1

c4j

so

1

c4
t0 ≤ 1

c4
ti+1 +

i∑
j=1

c4j + 1

and

t0 ≤ ti+1 + c4

 i∑
j=1

c4j + 1

 = ti+1 +
i+1∑
j=1

c4j

Therefore t0 ≤ tc +
∑i

j=1 c
4j =

∑i
j=1 c

4j < c4(c+1).
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The final lemma we need shows that when the matching is not locally perfect
on a stable component of the decomposition, it will reach a perfect matching
in time that depends only linearly in n in expectation, provided there is no
interference from members of lower stable components.

Lemma 23 Let A ∈ Π be a stable component of size at most c and X = D(A)−
A. Let µ′ be any matching on S which is not locally perfect on A. Then starting
from µ′, if no matches are formed between a member of A and a member of X,
the expected time reach a matching which is locally perfect on A is at most cn2c.

Proof. Lemma 19 implies that for any given matching, either the matching is
locally perfect on A or there is a blocking pair between two members of A which
is a pair in µ. Since the size of A is at most c, there are at most c such pairs.
Therefore if all of them are resolved in c consecutive steps, the resulting matching
will be locally perfect on A. Alternatively if after fewer than c steps of resolving
blocking pairs that are in µ we reach a matching with no such blocking pairs,
then the matching must already be locally perfect on A. For any given matching
there are at most n2 total blocking pairs so the probability of resolving a blocking
pair between two members of A that is a pair in µ is at least 1

n2 . But then the
probability of resolving up to c of them and reaching a locally perfect matching
in c or fewer steps is at least 1

n2c .
Therefore, in expectation we will have to repeat the process of making c steps

at most n2c times before reaching a locally perfect matching on A. This leads to
at most cn2c steps in expectation.

Finally we will show that the expected convergence time for the better re-
sponse dynamics is linear in the total number of participants but possibly ex-
ponential in the size of the largest stable component and depth of the decom-
position. The special case where the size of the decomposition is 1 includes the
correlated preferences of Ackermann et al.

Theorem 24 (Convergence) Suppose µ is a stable matching. Suppose the
depth of (Π,�) is d and the size of the largest stable component of Π is no more
than c. Then the expected time to converge to a stable matching is O(cO(cd)nO(c+d)).
If c = 1, then the expected time is O(n3).

Proof. Suppose µ′ is another stable matching. First, suppose that for any stable
component A′ of a µ′-decomposition, a µ′-stable matching is never reached on
Dµ′(A′).

Consider the µ-decomposition graph for (Π,�). Recall that a stable compo-
nent A is on level j if depth(A) = j. For convenience, let level d+1 be an empty
dummy level at the top. Since the depth is d, there are exactly d + 1 levels.
We proceed by bounding the expected time for one level to reach a µ stable
matching, and then recurse on the higher levels.

Let T (l) denote the expected time for the participants in stable components
on levels l and above to reach a stable matching without resolving blocking
pairs involving any members of stable components on lower levels. Let nl be the
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number of stable components on level l. Note that since there are at most n stable
components of D, n1+ . . .+nd ≤ n. We will show that T (0) = O(cO(cd)nO(c+d)).

First observe that T (d+1) = 0 since there are no stable components at level
d+ 1.

Now consider T (l) for l < d+ 1.

When one of the nl stable components A on level l is not in a locally perfect
matching. Then by Lemma 23, we know it will take cn2c steps in expectation
to reach a locally perfect matching on A. Also, by lemma 21 we know it has at
least 1

c2 probability of reaching a matching whose restriction to A has a greater
number of pairs that are in µ than the current matching, before it reaches a
locally perfect matching.

On the other hand, when all nl stable components are in locally perfect
matchings, then there are two cases:

If there is a blocking pair between two members of stable components on
level l it will remain there until the matching becomes not locally perfect on
at least one stable component on level l. Since there are at most n2 blocking
pairs, it will take at most n2 steps in expectation for the matching to become
not locally perfect on at least one stable component on level l.

If there are no such blocking pairs, it might be required for the higher levels to
reach a stable matching before exposing a blocking pair involving a participant
on level l. If no matches are formed involving any members of components on
level l or lower, the expected time for the remaining stable components to reach
a stable matching is given by T (l + 1). Once the higher levels have reached a
stable matching, the only blocking pairs not involving members of levels below l
are between a member of a stable component on level l and a member of a stable
component on a higher level. Unless all stable components on level l and above
are in a stable matching, at least one such blocking pair must exist. Therefore
it will only take 1 more step to reach a matching which is not locally perfect on
one stable component on level l.

Consequently, it will take at most n2+T (l+1)+1 steps to reach a matching
that is not locally perfect on one stable component on level l. Again, by Lemma
23, we know it will take cn2c steps in expectation to reach a locally perfect
matching on A. By Lemma 22, we know in expectation, for each stable com-
ponent on level l, it will take at most c4(c+1) transitions from a locally perfect
matching to a matching which is not locally perfect on that stable component it
reaches a µ-stable matching. This means that in expectation it will take at most
nlc

4(c+1) of these transitions total before all stable components on level l reach
a µ-stable matching.

Therefore, in the worst case, it will take (n2+T (l+1)+1) steps to transition
from a locally perfect matching to a matching that is not locally perfect on one
of the stable components on level l. Then it will take at most cn2c steps to reach
a matching which is locally perfect on that stable component. Furthermore, this
process needs to be repeated no more than nlc

4(c+1) times in expectation in
order for all stable components on level l to reach a µ-stable matching.
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Once all stable components on level l have reached a µ-stable matching, all
that remains is for the higher levels to reach a stable matching, which takes
T (l + 1) time in expectation.

This yields the following formula:

T (l) ≤ nlc
4(c+1)(cn2c+n2+T (l+1)+1)+T (l+1) ≤ 2nlc

4(c+1)(cn2c+T (l+1))

Solving this recursion for T (0), we obtain

T (0) ≤ 2n0c
4(c+1)(cn2c + T (1))

T (0) ≤ (cn2c)
d+1∑
i=1

(2c4(c+1))i
i−1∏
j=0

nj

so since ni + 1 ≤ O(n) for all i, T (0) = O(cO(cd)nO(c+d)).
This is the expected time to reach the stable matching µ. Now suppose for

some stable component A′ of a µ′-decomposition for some other stable matching
µ′, a µ′-stable matching is reached on Dµ′(A′). By Lemma 18, this will not
increase the size or depth of the remaining decomposition. Therefore, if this
happens before µ is reached, it will only decrease the convergence time.

Finally, as a special case assume c = 1. In this case a locally perfect matching
on a stable component is a µ-stable matching. By lemma 23 it will take at most
n2 steps for a stable component on level l to reach a µ-stable matching. Since
there are nl components on level l, T (l) ≤ nln

2 + T (l + 1) ≤
∑d−l

i=1 nin
2 so

T (0) =≤
∑d

i=1 nin
2 = n3.

4 Correlated and Intercorrelated Preferences

We have shown bounds on convergence time but this is only relevant if there
is variation in the jealousy graph structures of real markets. While randomly
generated preferences tend to have decompositions that are close to the trivial
decomposition, which is the entire set, real-world markets tend to have some
structure. Here we show that two classes of preferences found in real world
markets, correlated and intercorrelated preferences, exhibit decompositions with
small size components. Partially correlated preferences are often used by model-
ers [8, 11] and are natural in many matching markets (e.g. mate selection) where
preferences are based on a mixture of universally desirable features (e.g. intel-
ligence) and idiosyncratic tastes (e.g. shared hobbies). Note that the correlated
preferences discussed here differ from the correlated preferences of Ackemann
et al. Intercorrelation exists when the preferences of the men relate to the pref-
erences of the women. See [12] for examples of markets with intercorrelation.
Boudreau showed that more correlation and intercorrelation lead to faster con-
vergence of the better response algorithm [8]. We provide similar plots in Figures
1(b) and 1(d). Theorem 24 provides theoretical justification for these simulated
results.
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Fig. 1. Jealousy Graphs vs. Correlation and Intercorrelation. (a) The jealousy graph
parameters change as preferences become more correlated. (b) Convergence time de-
creases as preferences become more correlated. (c) The jealousy graph parameters
change as preferences become more intercorrelated. (d) Convergence time decreases as
preferences become more intercorrelated.

As described in [13, 11], correlated preferences are generated using scores of
the form:

Smw = ηmw + UIw

where Smw is the score man m gives woman w composed of his individual score
ηmw and a correlation factor U ∈ [0,∞) multiplied by the consensus score of
w, Iw. ηmw and Iw are chosen uniformly at random from [0, 1]. The men then
rank the women in order from lowest score to highest. Women’s preferences are
generated analogously. For various values of U we generate 100 preferences with
correlation factor U . For each set of preferences we find the decomposition with
smallest size and report the average of these sizes. We also compute the average
minimal depth in the same manner. The results are shown in figure 1(a). At
U = 0, the average size is close to n and the depth is close to 1. As U goes to
∞, the average size approaches 1 and the depth approaches n. These are the
parameters of perfectly correlated preferences. This shows that as the amount of
correlation varies, so do the size and depth of the decompositions. Figure 1(b)
shows the log of the average convergence time over 100 trials for each of the 100
correlated preferences generated.
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As in [12], intercorrelated preferences can be generated using scores of the
form:

Smiwj = ηmiwj + V ∗ |i− j|n

where Smiwj is the score man mi gives woman wj . As with correlated pref-
erences, ηmiwj is his individual score. Here V is the intercorrelation factor and
|i− j|n = min(|i− j|, n− |i− j|)/(n2 ) represents the “distance” man mi is from
woman wj . 1(c) and 1(d) are generated in the same manner as 1(a) and 1(b),
respectively. These plots show that as preferences become more intercorrelated,
the size and depth of the decompositions decrease. As Theorem 24 explains, this
decreases the convergence time of the better response algorithm as intercorrela-
tion increases.

5 Conclusion

We have introduced a new way of viewing stable matching problems in terms of
their jealousy graphs and µ-decompositions. We demonstrate that these concepts
are useful in analyzing the convergence time of the better response algorithm
and guarantee polynomial convergence on a subclass of matching markets. Fur-
thermore, these theoretical results apply to a broad range of markets since they
provide a notion of structure which extends beyond the well-studied notions of
correlation and intercorrelation.

One open question involves the exponential dependency on the depth of the
decomposition. While we know that the exponential dependency on size cannot
be removed, it remains an open question whether we can improve this bound in
terms of the depth. Another open problem concerns which matching is most likely
to be reached. Since our result provides a method of classifying the expected con-
vergence time of the better response algorithms in terms of the decompositions
of the stable matchings, we conjecture that matchings with decompositions that
have small size and depth are more likely to be reached than ones with large size
and depth.
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Appendix

Proof of Theorem 14

Proof. Let G = (V,E) and S = {mi, wi|i = 1, 2, . . . , n}. Arbitrarily index the
vertices in V as v1, v2, . . . , vn. We will design our preferences such that if µ(mi) =
wi for i = 1, 2, . . . , n, µ is a stable matching and vi is the vertex corresponding
to {mi, wi}. Now define P = {�mi ,�wi |1 ≤ i ≤ n} as follows. First, for every
woman wi, define �wi such that mi �wi mj for j 6= i. The remaining ordering
can be arbitrary. For every man, define �mi such that wj �mi wi ⇔ (vj , vi) ∈ E.
The ordering among elements within {wj |wj �mi wi} and {wj |wi �mi wj} can
be arbitrary.

To see that µ is indeed a stable matching, observe that under µ all women are
matched with their top choice. Therefore, no woman has incentive to deviate, so
there can be no blocking pairs and µ is a stable matching on S, P .

All that remains is to show Jµ = G. Now in Jµ = (V ′, E′) let the vertices
be denoted V ′ = v′1, v

′
2, . . . , v

′
n. We will let v′i correspond to {mi, wi} for i =

1, 2, . . . , n. Since all women are matched with their top preference by µ, the
women will not be responsible for any edges in Jµ. Therefore, (v

′
i, v

′
j) ∈ E′ ⇔

wi �mj wj ⇔ (vi, vj) ∈ E by the way we defined �mj for all i, j. Thus if we let
vi = v′i we have equivalent graphs.

Proof of Lemma 15

Proof. Let v1, v2, . . . , vk be the vertices along the path such that v1 = v{m,w}
and vk = v{m′,w′}. Let Ai be the stable component containing vi. Then since the
partial order is induced by the edges between components of Jµ, either Ai = Ai+1



16 Jealousy Graphs

or Ai � Ai+1. Therefore, by transitivity A1 � Ak = A. Thus m,w ∈ D(A)
because v{m,w} ∈ A1.

Proof of Lemma 16

Proof. Let A ∈ Π and a ∈ A. Suppose there is some s ∈ S−D(A) such that s �a

µ(a). Then since s /∈ A, there are distinct vertices in Jµ, va, vs corresponding to
the pair with a and the pair with s, respectively. Edge (vs, va) must also be in
Jµ since s �a µ(a). Thus there is a path in Jµ from vs to va, so by Lemma 15,
s ∈ D(A). This is a contradiction.

Proof of Lemma 17

Proof. Suppose there is x ∈ A
⋂
B but µ(x) ∈ A− B. By Lemma 16, µ′(x) �x

µ(x). In that case, µ′(x) ∈ A
⋂

B, also by Lemma 16. Now since x prefers
µ′(x) to µ(x), µ(µ′(x)) �µ′(x) x or else (x, µ′(x)) forms a blocking pair for
µ. Again by Lemma 16, µ(µ′(x)) ∈ A

⋂
B. Continuing in this manner gives an

infinite sequence x, µ′(x), µ(µ′(x)), µ′(µ(µ′(x))), . . . ∈ A
⋂
B. These elements are

distinct elements since µ(x) 6= µ′(x) and both µ and µ′ are bijective. This is a
contradiction since A

⋂
B is finite. Therefore µ(A

⋂
B) = µ′(A

⋂
B) = A

⋂
B.

Proof of Lemma 18

Proof. Let µ′′ be such that µ′′ �D(A)= µ′ �D(A) and µ′′ �S−D(A)= µ �S−D(A).
Clearly there are no blocking pairs involving two members of D(A) or else µ′

would not be stable and there are no blocking pairs between two members of
S − D(A) or else µ would not be stable. Finally, by Lemma 16 no member of
D(A) can prefer any member of S −D(A) to his partner in µ′. Therefore there
can be no blocking pairs between a member of D(A) and a member of S−D(A)
so µ′′ is indeed a stable matching.

By Lemma 17, for each stable component B of ρµ, µ(B−D(A)) = B−D(A).
The set {B − D(A)|B ∈ ρµ} forms a partition of S − D(A) and, paired with
the same partial order as ρµ, forms a decomposition. Clearly the size has not
increased since the sets in the partition are no larger and the depth has not
increased since the decomposition has the same partial order as ρµ.


